Product Description
Product Description
Material |
Rubber |
PU |
||
Teeth type |
ARC |
TÂ |
||
Teeth side |
Single side teeth |
Double side teeth |
||
End |
Open end |
Endless/round |
Rubber Synchronous Belt
Material: superior synthetic neoprene .
Skeleton: superior glass fiber cord.
Tooth face: nylon 66 high spandex for protection.Â
Features:
1.fine dynamic flex resistance;Â
2.good anti-cracking properties;Â
3.superior ozone-proof peformance;
4.sound heat-resistance;
5.wear-ability..
PU Timing Belt
Material:thermoplastic polyurethame
Skeleton:steel wire or aramid cord.
Mechanical Capacity:
1. Fine size stability
2. Little pre-10sion
3. Low-noise
4. Highly anti-wear ability
5. Non-maintenance
6. Good elasticity
7. The max linear velocity can reaches 80m/second
8. High precision linear positioning
PU Timing belt can have the following special processing:
1. Add paz
2. Add PAR
3. Cover linatex or silicone on the back
4. Add cleats in belt back
Packaging & Shipping
Company Profile
Â
ZheJiang Haorongshengye Electrical Equipment Co., Ltd.
1. Was founded in 2008
2. Our Principle:
“Credibility Supremacy, and Customer First”
3. Our Promise:
“High quality products, and Excellent Service”
4. Our Value:
“Being Honesty, Doing the Best, and Long-lasting Development”
5. Our Aim:
“Develop to be a leader in the power transmission parts industry in the world”
Â
6.Our services: |
1).Competitive price |
|||
2).High quality products |
||||
3).OEM service or can customized according to your drawings |
||||
4).Reply your inquiry in 24 hours |
||||
5).Professional technical team 24 hours online service |
||||
6).Provide sample service |
Main products
Machines
Â
Exbihition
Â
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Standard or Nonstandard: | Standard |
---|---|
Application: | Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car |
Feature: | Flame-Retardant, Anti-Static, Oil-Resistant, Cold-Resistant, Corrosion-Resistant, Heat-Resistant, Alkali-Resistant, Skid-Resistance, Wear-Resistant, Acid-Resistant, High Temperature-Resistance |
Tensile Strength: | Strong |
Material: | PU |
Type: | Circular Belt |
Samples: |
US$ 100/Meter
1 Meter(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How do idler pulleys contribute to the functioning of HVAC and conveyor systems?
Idler pulleys play a crucial role in the functioning of HVAC (Heating, Ventilation, and Air Conditioning) and conveyor systems. Here’s a detailed explanation of how idler pulleys contribute to the operation of these systems:
HVAC Systems:
In HVAC systems, idler pulleys are primarily used for power transmission and belt tensioning. Here are the key ways in which idler pulleys contribute to the functioning of HVAC systems:
1. Belt Routing and Tensioning:
Idler pulleys guide and support the belts used in HVAC systems, ensuring proper routing and tensioning. They help keep the belts in alignment with the driving and driven pulleys, preventing slippage and ensuring efficient power transmission. Idler pulleys maintain the necessary tension in the belts, which is crucial for optimal HVAC system operation.
2. Load Distribution:
Idler pulleys assist in distributing the load evenly across the HVAC system. By supporting the movement of belts, they help distribute the load and minimize stress on individual components. Proper load distribution ensures balanced wear and tear, prolonging the lifespan of the system.
3. Noise and Vibration Reduction:
Idler pulleys contribute to reducing noise and vibration in HVAC systems. They help dampen vibrations caused by belt operation, resulting in quieter and smoother system performance. Reduced noise and vibration levels enhance the comfort and usability of the HVAC system.
4. System Efficiency:
Efficient idler pulley operation improves the overall efficiency of HVAC systems. Well-designed idler pulleys with low friction and proper tensioning minimize power losses, ensuring optimal energy consumption. By reducing inefficiencies and maximizing energy conservation, idler pulleys contribute to improved HVAC system performance.
Conveyor Systems:
In conveyor systems, idler pulleys are essential for belt support, tensioning, and guiding. Here’s how idler pulleys contribute to the functioning of conveyor systems:
1. Belt Support:
Idler pulleys provide support to the conveyor belt, preventing sagging and maintaining its shape. They are strategically positioned along the belt path to support the weight of the conveyed material, ensuring smooth and reliable transportation. Proper belt support is crucial for preventing belt damage and ensuring efficient material handling.
2. Tensioning:
Idler pulleys are used for belt tensioning in conveyor systems. They help maintain the appropriate tension in the conveyor belt, ensuring proper engagement with the drive pulley and preventing slippage. Proper belt tensioning is critical for efficient power transmission and preventing material spillage or jamming.
3. Belt Guiding and Tracking:
Idler pulleys guide and track the conveyor belt, ensuring it stays aligned and centered. They are designed with grooves or cylindrical surfaces that match the shape of the conveyor belt, providing guidance and preventing lateral movement. By maintaining proper belt tracking, idler pulleys minimize belt misalignment, reducing the risk of damage and improving overall conveyor system performance.
4. Load Distribution:
Idler pulleys contribute to even load distribution in conveyor systems. By supporting the belt and load, they help distribute the weight evenly across the system, minimizing stress on individual components. Proper load distribution ensures reliable and efficient operation, preventing premature wear and component failure.
5. System Reliability:
Reliable idler pulley operation is crucial for the overall reliability of conveyor systems. Idler pulleys that are correctly sized, well-maintained, and properly lubricated contribute to the smooth and continuous operation of the system. They help minimize downtime, reduce the risk of belt slippage or jamming, and ensure the efficient movement of materials.
Overall, idler pulleys are essential components for the functioning of HVAC and conveyor systems. Their role in belt routing, tensioning, load distribution, noise reduction, system efficiency, and reliability makes them integral to the smooth operation and performance of these systems.
How are idler pulleys customized for specific machinery and equipment?
Idler pulleys can be customized to meet the specific requirements of different machinery and equipment. Here’s a detailed explanation of how idler pulleys are customized for specific applications:
1. Size and Diameter:
Idler pulleys are available in a wide range of sizes and diameters. To customize an idler pulley for specific machinery and equipment, the size and diameter can be selected based on factors such as the space available, the desired belt wrap, and the required load-bearing capacity. Larger machinery may require larger idler pulleys to accommodate the size and power requirements, while smaller equipment may require compact idler pulleys to fit within limited spaces.
2. Material Selection:
The choice of material for idler pulleys depends on the specific application. Idler pulleys can be made from various materials, including steel, aluminum, plastic, or composite materials. The material selection depends on factors such as the environment, load capacity, desired weight, and durability requirements. Corrosion-resistant materials may be chosen for applications in harsh or corrosive environments, while lightweight materials may be preferred for applications where weight reduction is critical.
3. Bearing Type:
Idler pulleys utilize bearings to support the rotating shaft. The selection of bearing type depends on factors such as the load capacity, speed, and environmental conditions. Common bearing types include ball bearings, roller bearings, and needle bearings. The choice of bearing type ensures smooth rotation and proper load distribution, contributing to the overall performance and longevity of the idler pulley.
4. Mounting Configuration:
Idler pulleys can be customized with various mounting configurations to suit specific machinery and equipment. The mounting configuration includes options such as bolt-on, flange-mounted, or shaft-mounted designs. The selection depends on the installation requirements and the available mounting points on the equipment. Customizable mounting options allow for easy integration and proper alignment of the idler pulley within the system.
5. Special Features:
In some cases, idler pulleys may require special features or modifications to meet unique application needs. This can include the addition of groove profiles for specific belt types, design modifications for improved belt tracking, or the incorporation of tensioning mechanisms for precise tension adjustment. These customization options ensure that the idler pulleys are optimized for the specific machinery and equipment, resulting in enhanced performance and functionality.
6. Application-Specific Testing:
In certain cases, idler pulleys may undergo application-specific testing to validate their performance and suitability for the intended use. This can include testing for load capacity, rotational speed, temperature resistance, noise levels, and durability. By conducting these tests, manufacturers can ensure that the customized idler pulleys meet the specific requirements and performance expectations of the machinery and equipment.
Customizing idler pulleys for specific machinery and equipment allows for optimal performance, improved efficiency, and increased reliability. By considering factors such as size, material, bearing type, mounting configuration, special features, and conducting application-specific testing, idler pulleys can be tailored to meet the unique needs of different applications.
What is an idler pulley, and what is its role in mechanical systems?
An idler pulley is a specific type of pulley that is used in mechanical systems. Here’s a detailed explanation of what an idler pulley is and its role in mechanical systems:
Definition:
An idler pulley is a pulley that is not directly connected to a power source or used for power transmission. Instead, it is used to guide and redirect a belt or rope in a system. The idler pulley is typically positioned in such a way that it changes the direction of the belt or rope, adjusts tension, or provides support to ensure smooth operation.
Role in Mechanical Systems:
The primary role of an idler pulley in mechanical systems is to maintain proper tension and alignment of belts or ropes. It helps to redirect the path of the belt or rope, ensuring that it remains in the correct position and stays engaged with other pulleys or components.
Here are some specific roles and functions of idler pulleys:
1. Belt Tension:
An idler pulley can be used to adjust and maintain the tension in a belt or rope. By adding or removing an idler pulley or adjusting its position, the tension in the belt can be properly controlled. This is crucial for preventing slippage, ensuring efficient power transmission, and extending the lifespan of the belt.
2. Directional Change:
In some systems, an idler pulley is strategically placed to change the direction of the belt or rope. By guiding the belt along a different path, the idler pulley allows the belt to reach components that would otherwise be inaccessible or difficult to connect directly. This enables flexibility in designing mechanical systems and facilitates the proper functioning of various components.
3. Belt Alignment:
An idler pulley helps maintain proper alignment of belts or ropes. It ensures that the belt remains centered on the pulleys and does not deviate from its intended path. Proper alignment is vital for efficient power transmission, as misaligned belts can cause increased friction, wear, and loss of energy.
4. Load Distribution:
In systems with multiple belts or ropes, an idler pulley can be used to distribute the load evenly. By introducing an idler pulley between two driving pulleys, the load can be divided, reducing stress on individual components and improving overall system performance.
5. Noise and Vibration Reduction:
An idler pulley can help reduce noise and vibration in mechanical systems. By providing additional support and tension to belts or ropes, it minimizes excessive movement and vibration, resulting in quieter operation and increased stability.
Idler pulleys are commonly found in various applications, including automotive engines, HVAC systems, conveyor systems, and industrial machinery. Their role in maintaining tension, guiding belts, adjusting alignment, distributing load, and reducing noise makes them essential components in ensuring the smooth and efficient operation of mechanical systems.
editor by CX
2024-01-03